以一种比较繁琐的几何方式暴力证明了倍角公式以及和差角公式
倍角公式
如图,在Rt△ACB中,AD平分∠BAC交BC于点D,DE⊥AB交AB于点E
我们设∠CAD=∠DAE=α,试求2α的各三角函数值
我们不妨设AB=1,则AC=AE=cos(2α),BC=sin(2α)
从而DC=DE=tan(α)cos(2α)
进而,我们有BE=1−cos(2α),BD=sin(2α)−cos(2α)tan(α)
同时,我们有△BDE∽△BAC
也就是有:
BABDsin(2α)−tan(α)cos(2α)=BCBE=ACDE=sin(2α)1−cos(2α)=cos(2α)tan(α)cos(2α)从而我们就会有:
{1−cos(2α)=tan(α)sin(2α)sin(2α)−tan(α)cos(2α)=tan(α)也就是:
{tan2(α)sin(2α)+tan(α)cos(2α)=tan(α)sin(2α)−tan(α)cos(2α)=tan(α)从而就有:
tan2(α)sin(2α)+sin(2α)=2tan(α)也就可以推出:
sin(2α)cos(2α)tan(2α)=1+tan2(α)2tan(α)=tan2(α)+1tan2(α)−1=cos(2α)sin(2α)=tan2(x)−12tan(α)综上,也就有:
⎩⎨⎧sin(2α)cos(2α)tan(2α)=2sin(α)cos(α)=cos2(α)−sin2(α)=tan2(α)−12tan(α)和差角公式
如图,设BD=r,BC=a,AC=b,AB=c,∠CBD=α,∠ABD=β
则CD=rsin(α),BC=a=rcos(α),DE=rsin(β),BE=rcos(β)
而AE=c−BE=c−rcos(β),AD=b−CD=b−rsin(α)
且有△ADE∽△ABC,也就是有:
ABAD=ACAE=BCDEcb−rsin(α)=bc−rcos(β)=rcos(α)rsin(β)那么也就有
{ccos(α)−rcos(α)cos(β)=bsin(β)bcos(α)−rsin(α)cos(α)=csin(β)我们不妨令sin(α+β)=x=cb,那么就有b=csin(α+β),带入即可得到:
{ccos(α)−rcos(α)cos(β)=csin(α+β)sin(β)csin(α+β)cos(α)−rsin(α)cos(α)=csin(β)也就有:
{c(cos(α)−sin(α+β)sin(β))=rcos(α)cos(β)c(sin(α+β)cos(α)−sin(β))=rsin(α)cos(α)两者求比:
sin(α+β)cos(α)−sin(β)cos(α)−sin(α+β)sin(β)=sin(α)cos(β)sin(α)cos(α)−sin(α+β)sin(α)sin(β)=sin(α+β)cos(α)cos(β)−sin(β)cos(β)sin(α+β)(sin(α)sin(β)+cos(α)cos(β))=sin(α)cos(α)+sin(β)cos(β)sin(α+β)=sin(α)sin(β)+cos(α)cos(β)sin(α)cos(α)+sin(β)cos(β)=sin(α)sin(β)+cos(α)cos(β)sin(α)cos(α)(sin2(β)+cos2(β))+sin(β)cos(β)(sin2(α)+cos2(α))=sin(α)cos(β)+cos(α)sin(β)同理可以导出其他三角函数的和差角