倍角公式以及和差角公式的纯几证法

以一种比较繁琐的几何方式暴力证明了倍角公式以及和差角公式

倍角公式

ABCDE

如图,在RtACBRt\triangle ACB中,ADAD平分BAC\angle BACBCBC于点DD,DEABDE\perp ABABAB于点EE
我们设CAD=DAE=α\angle CAD=\angle DAE=\alpha,试求2α2\alpha的各三角函数值

我们不妨设AB=1AB=1,则AC=AE=cos(2α),BC=sin(2α)AC=AE=\cos(2\alpha),BC=\sin(2\alpha)
从而DC=DE=tan(α)cos(2α)DC=DE=\tan(\alpha)\cos(2\alpha)
进而,我们有BE=1cos(2α)BE=1-\cos(2\alpha),BD=sin(2α)cos(2α)tan(α)BD=\sin(2\alpha)-\cos(2\alpha)\tan(\alpha)
同时,我们有BDEBAC\triangle BDE\backsim\triangle BAC
也就是有:

BDBA=BEBC=DEACsin(2α)tan(α)cos(2α)=1cos(2α)sin(2α)=tan(α)cos(2α)cos(2α)\begin{align*} \frac{BD}{BA}&=\frac{BE}{BC}=\frac{DE}{AC}\\ \sin(2\alpha)-\tan(\alpha)\cos(2\alpha)&=\frac{1-\cos(2\alpha)}{\sin(2\alpha)}=\frac{\tan(\alpha)\cos(2\alpha)}{\cos(2\alpha)} \end{align*}

从而我们就会有:

{1cos(2α)=tan(α)sin(2α)sin(2α)tan(α)cos(2α)=tan(α)\begin{cases} 1-\cos(2\alpha)=\tan(\alpha)\sin(2\alpha)\\ \sin(2\alpha)-\tan(\alpha)\cos(2\alpha)=\tan(\alpha) \end{cases}

也就是:

{tan2(α)sin(2α)+tan(α)cos(2α)=tan(α)sin(2α)tan(α)cos(2α)=tan(α)\begin{cases} \tan^2(\alpha)\sin(2\alpha)+\tan(\alpha)\cos(2\alpha)=\tan(\alpha)\\ \sin(2\alpha)-\tan(\alpha)\cos(2\alpha)=\tan(\alpha) \end{cases}

从而就有:

tan2(α)sin(2α)+sin(2α)=2tan(α)\tan^2(\alpha)\sin(2\alpha)+\sin(2\alpha)=2\tan(\alpha)

也就可以推出:

sin(2α)=2tan(α)1+tan2(α)cos(2α)=tan2(α)1tan2(α)+1tan(2α)=sin(2α)cos(2α)=2tan(α)tan2(x)1\begin{align*} \sin(2\alpha)&=\frac{2\tan(\alpha)}{1+\tan^2(\alpha)}\\ \cos(2\alpha)&=\frac{\tan^2(\alpha)-1}{\tan^2(\alpha)+1}\\ \tan(2\alpha)&=\frac{\sin(2\alpha)}{\cos(2\alpha)}=\frac{2\tan(\alpha)}{\tan^2(x)-1} \end{align*}

综上,也就有:

{sin(2α)=2sin(α)cos(α)cos(2α)=cos2(α)sin2(α)tan(2α)=2tan(α)tan2(α)1\begin{cases} \sin(2\alpha)&=2\sin(\alpha)\cos(\alpha)\\ \cos(2\alpha)&=\cos^2(\alpha)-\sin^2(\alpha)\\ \tan(2\alpha)&=\dfrac{2\tan(\alpha)}{\tan^2(\alpha)-1} \end{cases}

和差角公式

BACDEcabr

如图,设BD=rBD=r,BC=aBC=a,AC=bAC=b,AB=cAB=c,CBD=α\angle CBD=\alpha,ABD=β\angle ABD=\beta
CD=rsin(α),BC=a=rcos(α),DE=rsin(β),BE=rcos(β)CD=r\sin(\alpha),BC=a=r\cos(\alpha),DE=r\sin(\beta),BE=r\cos(\beta)
AE=cBE=crcos(β)AE=c-BE=c-r\cos(\beta),AD=bCD=brsin(α)AD=b-CD=b-r\sin(\alpha)
且有ADEABC\triangle ADE\backsim\triangle ABC,也就是有:

ADAB=AEAC=DEBCbrsin(α)c=crcos(β)b=rsin(β)rcos(α)\begin{gather*} \frac{AD}{AB}=\frac{AE}{AC}=\frac{DE}{BC}\\ \frac{b-r\sin(\alpha)}{c}=\frac{c-r\cos(\beta)}{b}=\frac{r\sin(\beta)}{r\cos(\alpha)} \end{gather*}

那么也就有

{ccos(α)rcos(α)cos(β)=bsin(β)bcos(α)rsin(α)cos(α)=csin(β)\begin{cases} c\cos(\alpha)-r\cos(\alpha)\cos(\beta)=b\sin(\beta)\\ b\cos(\alpha)-r\sin(\alpha)\cos(\alpha)=c\sin(\beta) \end{cases}

我们不妨令sin(α+β)=x=bc\sin(\alpha+\beta)=x=\dfrac{b}{c},那么就有b=csin(α+β)b=c\sin(\alpha+\beta),带入即可得到:

{ccos(α)rcos(α)cos(β)=csin(α+β)sin(β)csin(α+β)cos(α)rsin(α)cos(α)=csin(β)\begin{cases} c\cos(\alpha)-r\cos(\alpha)\cos(\beta)=c\sin(\alpha+\beta)\sin(\beta)\\ c\sin(\alpha+\beta)\cos(\alpha)-r\sin(\alpha)\cos(\alpha)=c\sin(\beta) \end{cases}

也就有:

{c(cos(α)sin(α+β)sin(β))=rcos(α)cos(β)c(sin(α+β)cos(α)sin(β))=rsin(α)cos(α)\begin{cases} c(\cos(\alpha)-\sin(\alpha+\beta)\sin(\beta))=r\cos(\alpha)\cos(\beta)\\ c(\sin(\alpha+\beta)\cos(\alpha)-\sin(\beta))=r\sin(\alpha)\cos(\alpha) \end{cases}

两者求比:

cos(α)sin(α+β)sin(β)sin(α+β)cos(α)sin(β)=cos(β)sin(α)sin(α)cos(α)sin(α+β)sin(α)sin(β)=sin(α+β)cos(α)cos(β)sin(β)cos(β)sin(α+β)(sin(α)sin(β)+cos(α)cos(β))=sin(α)cos(α)+sin(β)cos(β)\begin{gather*} \frac{\cos(\alpha)-\sin(\alpha+\beta)\sin(\beta)}{\sin(\alpha+\beta)\cos(\alpha)-\sin(\beta)}=\frac{\cos(\beta)}{\sin(\alpha)}\\ \sin(\alpha)\cos(\alpha)-\sin(\alpha+\beta)\sin(\alpha)\sin(\beta)=\sin(\alpha+\beta)\cos(\alpha)\cos(\beta)-\sin(\beta)\cos(\beta)\\ \sin(\alpha+\beta)(\sin(\alpha)\sin(\beta)+\cos(\alpha)\cos(\beta))=\sin(\alpha)\cos(\alpha)+\sin(\beta)\cos(\beta)\\ \end{gather*}
sin(α+β)=sin(α)cos(α)+sin(β)cos(β)sin(α)sin(β)+cos(α)cos(β)=sin(α)cos(α)(sin2(β)+cos2(β))+sin(β)cos(β)(sin2(α)+cos2(α))sin(α)sin(β)+cos(α)cos(β)=sin(α)cos(β)+cos(α)sin(β)\begin{align*} \sin(\alpha+\beta)&=\frac{\sin(\alpha)\cos(\alpha)+\sin(\beta)\cos(\beta)}{\sin(\alpha)\sin(\beta)+\cos(\alpha)\cos(\beta)}\\ &=\frac{\sin(\alpha)\cos(\alpha)(\sin^2(\beta)+\cos^2(\beta))+\sin(\beta)\cos(\beta)(\sin^2(\alpha)+\cos^2(\alpha))}{\sin(\alpha)\sin(\beta)+\cos(\alpha)\cos(\beta)}\\ &=\sin(\alpha)\cos(\beta)+\cos(\alpha)\sin(\beta) \end{align*}

同理可以导出其他三角函数的和差角

评论